Publications
Avner priel
1) Cytoskeletal Proteins as Drug Development Targets for Various Diseases,
N. J. Woolf, A.Priel, J. A.Tuszynski, in Hypotheses in Clinical Medicine (2012)
2) Reversibility and efficiency in coding protein information, B.Tamir, A.Priel
J. Theor Biol. 267(4):519-25 (2010)
3) Model of ionic currents through microtubule nanopores and the lumen, H.Freedman V.Rezania, A.Priel, E.Carpenter, S.Y.Noskov, J.A.Tuszynski, Phys Rev E. 81(5 Pt 1):051912 (2010)
4) Microtubule ionic conduction and its implications for higher cognitive functions, T.J.Craddock, J.A.Tuszynski, A.Priel, H.Freedman, J. Integr Neurosci. ;9(2):103-22, (2010)
5) Nanoneuroscience, Structural and Functional Roles of the Neuronal Cytoskeleton in Health and Disease, N. J.Woolf, A. Priel and J. A. Tuszynski, Springer (2010)
6) Neural cytoskeleton capabilities for learning and memory, A.Priel, J. A. Tuszynski and N.J. Woolf, J. Biological Physics ;36(1):3-21. Epub (2009)
7) A non-linear cable-like model of amplified ionic wave propagation along microtubules, A.Priel and J.A. Tuszynski, Europhysics Letters 83(6) 68004 (2008)
8) Effect of calcium on electrical energy transfer by microtubules, A.Priel, A. J. Ramos, J. A. Tuszynski, and H. F. Cantiello, J. Biological Physics 34(5), 475-485 (2008)
9) Mean First Passage Time in Periodic Attractors, Avner Priel, J. Phys. A: Math. Gen. 39:8603-8612 (2006)
10) Ionic waves propagation along the dendritic cytoskeleton as a signaling mechanism,
A.Priel, J. A. Tuszynski and H. F. Cantiello, Advances in Molecular and Cell Biology, Elsevier (2006)
11) A Bio-Polymer Transistor: Electrical Amplification by Microtubules, A. Priel, A. J. Ramos, J. A. Tuszynski, and H.F. Cantiello, Biophysical Journal 90(12) 4639 (2006)
12) Electrodynamic signaling by the dendritic cytoskeleton: towards an intracellular information processing model, A.Priel, J. A. Tuszynski and H.F. Cantiello, Electromagnetic Biology and Medicine 24(3): 221:231 (2005)
N. J. Woolf, A.Priel, J. A.Tuszynski, in Hypotheses in Clinical Medicine (2012)
2) Reversibility and efficiency in coding protein information, B.Tamir, A.Priel
J. Theor Biol. 267(4):519-25 (2010)
3) Model of ionic currents through microtubule nanopores and the lumen, H.Freedman V.Rezania, A.Priel, E.Carpenter, S.Y.Noskov, J.A.Tuszynski, Phys Rev E. 81(5 Pt 1):051912 (2010)
4) Microtubule ionic conduction and its implications for higher cognitive functions, T.J.Craddock, J.A.Tuszynski, A.Priel, H.Freedman, J. Integr Neurosci. ;9(2):103-22, (2010)
5) Nanoneuroscience, Structural and Functional Roles of the Neuronal Cytoskeleton in Health and Disease, N. J.Woolf, A. Priel and J. A. Tuszynski, Springer (2010)
6) Neural cytoskeleton capabilities for learning and memory, A.Priel, J. A. Tuszynski and N.J. Woolf, J. Biological Physics ;36(1):3-21. Epub (2009)
7) A non-linear cable-like model of amplified ionic wave propagation along microtubules, A.Priel and J.A. Tuszynski, Europhysics Letters 83(6) 68004 (2008)
8) Effect of calcium on electrical energy transfer by microtubules, A.Priel, A. J. Ramos, J. A. Tuszynski, and H. F. Cantiello, J. Biological Physics 34(5), 475-485 (2008)
9) Mean First Passage Time in Periodic Attractors, Avner Priel, J. Phys. A: Math. Gen. 39:8603-8612 (2006)
10) Ionic waves propagation along the dendritic cytoskeleton as a signaling mechanism,
A.Priel, J. A. Tuszynski and H. F. Cantiello, Advances in Molecular and Cell Biology, Elsevier (2006)
11) A Bio-Polymer Transistor: Electrical Amplification by Microtubules, A. Priel, A. J. Ramos, J. A. Tuszynski, and H.F. Cantiello, Biophysical Journal 90(12) 4639 (2006)
12) Electrodynamic signaling by the dendritic cytoskeleton: towards an intracellular information processing model, A.Priel, J. A. Tuszynski and H.F. Cantiello, Electromagnetic Biology and Medicine 24(3): 221:231 (2005)
Barak Bringoltz
1. Large-N reduction with adjoint Wilson fermions, Barak Bringoltz, Mateusz Koren, Stephen R. Sharpe, PoS LATTICE2012 (2012) 045, Conference: C12-06-24 Proceedings e-Print: arXiv:1212.0535
2. Large-N reduction with two adjoint Dirac fermions, Barak Bringoltz, Mateusz Koren, Stephen R. Sharpe, PoS LATTICE2011 (2011) 072, e-Print: arXiv:1111.1059
3. Large-N reduction in QCD with two adjoint Dirac fermions, Barak Bringoltz, Mateusz Koren, Stephen R. Sharpe, Phys.Rev. D85 (2012) 094504, e-Print: arXiv:1106.5538
4. Closed flux tubes and their string description in D=2+1 SU(N) gauge theories
5. Andreas Athenodorou, Barak Bringoltz, Michael Teper, JHEP 1105 (2011) 042, e-Print: arXiv:1103.5854
6. Closed flux tubes and their string description in D=3+1 SU(N) gauge theories Andreas Athenodorou, Barak Bringoltz, Michael Teper, JHEP 1102 (2011) 030 e-Print: arXiv:1007.4720
7. Large-N spacetime reduction and the sign and silver-blaze problems of dense QCD Barak Bringoltz, JHEP 1006 (2010) 076, e-Print: arXiv:1004.0030
8. The Spectrum of closed loops of fundamental flux in D = 3+1 SU(N) gauge theories Andreas Athenodorou, Barak Bringoltz, Michael Teper, PoS LAT2009 (2009) 223 e-Print: arXiv:0912.3238
9. Partial breakdown of center symmetry in large-N QCD with adjoint Wilson fermions Barak Bringoltz, JHEP 1001 (2010) 069, e-Print: arXiv:0911.0352
10. Volume independence of large-N QCD with adjoint fermions, Barak Bringoltz, Stephen R. Sharpe, PoS LAT2009 (2009) 048, e-Print: arXiv:0909.1843
11. Non-perturbative volume-reduction of large-N QCD with adjoint fermions, Barak Bringoltz, Stephen R. Sharpe, Phys.Rev. D80 (2009) 065031, e-Print: arXiv:0906.3538
12. Large-N volume reduction of lattice QCD with adjoint Wilson fermions at weak-coupling, Barak Bringoltz, JHEP 0906 (2009) 091, e-Print: arXiv:0905.2406
2. Large-N reduction with two adjoint Dirac fermions, Barak Bringoltz, Mateusz Koren, Stephen R. Sharpe, PoS LATTICE2011 (2011) 072, e-Print: arXiv:1111.1059
3. Large-N reduction in QCD with two adjoint Dirac fermions, Barak Bringoltz, Mateusz Koren, Stephen R. Sharpe, Phys.Rev. D85 (2012) 094504, e-Print: arXiv:1106.5538
4. Closed flux tubes and their string description in D=2+1 SU(N) gauge theories
5. Andreas Athenodorou, Barak Bringoltz, Michael Teper, JHEP 1105 (2011) 042, e-Print: arXiv:1103.5854
6. Closed flux tubes and their string description in D=3+1 SU(N) gauge theories Andreas Athenodorou, Barak Bringoltz, Michael Teper, JHEP 1102 (2011) 030 e-Print: arXiv:1007.4720
7. Large-N spacetime reduction and the sign and silver-blaze problems of dense QCD Barak Bringoltz, JHEP 1006 (2010) 076, e-Print: arXiv:1004.0030
8. The Spectrum of closed loops of fundamental flux in D = 3+1 SU(N) gauge theories Andreas Athenodorou, Barak Bringoltz, Michael Teper, PoS LAT2009 (2009) 223 e-Print: arXiv:0912.3238
9. Partial breakdown of center symmetry in large-N QCD with adjoint Wilson fermions Barak Bringoltz, JHEP 1001 (2010) 069, e-Print: arXiv:0911.0352
10. Volume independence of large-N QCD with adjoint fermions, Barak Bringoltz, Stephen R. Sharpe, PoS LAT2009 (2009) 048, e-Print: arXiv:0909.1843
11. Non-perturbative volume-reduction of large-N QCD with adjoint fermions, Barak Bringoltz, Stephen R. Sharpe, Phys.Rev. D80 (2009) 065031, e-Print: arXiv:0906.3538
12. Large-N volume reduction of lattice QCD with adjoint Wilson fermions at weak-coupling, Barak Bringoltz, JHEP 0906 (2009) 091, e-Print: arXiv:0905.2406
L. P. Horwitz
1. On the Green-Functions of the classical offshell electrodynamics under the manifestly covariant relativistic dynamics of Stueckelberg, I. Aharonovich, L. P. Horwitz , arXiv:1102.4840v4, (2011)
2. Semigroup evolution in Wigner Weisskopf pole approximation with Markovian spectral coupling, F. Shikerman, A. Peer, L. P. Horwitz, arXiv:1103.1150v2, (2011)
2. Semigroup evolution in Wigner Weisskopf pole approximation with Markovian spectral coupling, F. Shikerman, A. Peer, L. P. Horwitz, arXiv:1103.1150v2, (2011)
Oded Maimon
1. ATime Decomposition Method for Sequence Dependent Setup Scheduling under pressing Demand Conditions, E. Khmelnitsky, K. Kogan, and O. Maimon, IEEE Transactions on Automatic Control, Vol. 45, No. 4, pp. 638-652, (2000)
2. Production Flow control in a cell with Group of Identical Machines, O. Maimon, E. Khmelnitsky, and K. Kogan, “”, IIE Transactions, Vol. 32, No. 7, pp. 599-611,(2000)
3. A neural network approach for Robot task Sequencing Planning, O. Maimon, D. Braha, and V. Seth, "", Artificial Intelligence in Engineering, Vol. 14, No.2, (2000)
2. Production Flow control in a cell with Group of Identical Machines, O. Maimon, E. Khmelnitsky, and K. Kogan, “”, IIE Transactions, Vol. 32, No. 7, pp. 599-611,(2000)
3. A neural network approach for Robot task Sequencing Planning, O. Maimon, D. Braha, and V. Seth, "", Artificial Intelligence in Engineering, Vol. 14, No.2, (2000)
T.Kolatt
1. Blind Decomposition of Microscopic Hyper-spectral images to physical layers using sparse representation, G.Begelman, M.Zibulevsky, E.Rivlin, T.Kolatt, IEEE Medical Imaging, 28 issue: 8, 1317-1324, (2009)
2. The correlation between nuclear size and protein expression level of prognostic and predictive biomarkers in breast carcinoma by computer assisted technology, T.Kolatt, B.Lifschitz-Mercer, and I.Solar, Vir. Arch – the European Journal of Pathology (2009) 455 (Suppl1): S1-S482, P10.8
3. MRI cerebral blood volume through perfusion for glioma diagnosis as compared to blood vessel density assessments in pathology specimens, T.Kolatt, D.Ben-Besht, I.Solar, 2014, In preparation
4. Hemodynamic Response Imaging: A Potential Tool for the Assessment of Angiogenesis in Brain Tumors, D.Ben Bashat et al., 2012, PLoS One (7) 11
5. Night-Time Ground Hyperspectral Imaging for Urban-Scale Remote Sensing of Ambient PM. I. Aerosol Optical Thickness Acquisition, Y.Etzion, T.Jarmer, T.Kolatt, M. Shoshany, & D.Broday, Aerosol Scie. Tech. (46) 10, (2012)
6. Accuracy of Pitch Matching Significantly Improved by Live Voice Model, R.Granot, R. Israel-Kolatt, A.Gilboa, T. Kolatt, Journal of Voice 27 (3) , (2013)
7. Night-Time Ground Hyperspectral Imaging for Urban-Scale Remote Sensing of Ambient PM—Modal Concentrations Retrieval, Y.Etzion, T.Kolatt, M.Shoshany, & D.Broday, Environ. Sci. Technol. 48 (3), pp 1787–1794, (2014)
Elitzur, A.C
1. Quantum nonlocality for each pair in an ensemble, Elitzur, A.C., Popescu, S., & Rohrlich, D. Physics Letters, A162, 2528, (1992)
2. Locality and indeterminism preserve the second law, Elitzur, A.C., Physics Letters, A167, 335-340, (1992)
3. Quantum mechanical interaction-free measurements, Elitzur, A.C., & Vaidman, L. Foundations of Physics, 23, 987997, (1993)
4. Black hole evaporation entails an objective passage of time, Elitzur, A.C., & Dolev, S. Foundations of Physics Letters, 12, 309-323, (1999)
5. Nonlocal effects of partial measurements and quantum erasure, Elitzur, A.C., & Dolev, S. Physical Review, A63, 062109-1—062109-14, (2001)
6. The Nature of Time: Geometry, Physics & Perception. In Buccheri, R., Saniga, M., & Stuckey, W. M. [Eds.] NATO Science Series, II: Mathematics, Physics and Chemistry, 95, 297-306. New York: Kluwer.
7. Time-reversed EPR and the choice of histories in quantum mechanics, Elitzur, A.C., Dolev, S., & Zeilinger, A. Proceedings of XXII Solvay Conference in Physics, 452-461. London: World Scientific, (2003)
8. Quantum phenomena within a new theory of time, Elitzur, A.C., Dolev, S., & Kolenda, N. [Eds.] Quo Vadis Quantum Mechanics?, 325-350. New York: Springer, (2005)
9. What is the measurement problem anyway? Introductory reflections on quantum puzzles, in Introduction to Quo Vadis Quantum Mechanics? Elitzur, A.C., Dolev, S., & Kolenda, N., Editors, New York: Springer, (2005)
10. Becoming as a bridge between quantum mechanics and relativity,
Saniga, M., Buccheri, R., and Elitzur, A.C. [Eds.] Endophysics, Time, Quantum and the Subjective, 589-606. London: World Scientific, (2005)
11. Multiple interaction-free measurement as a challenge to the transactional interpretation of quantum mechanics, In Sheehan, D. [Ed.] Frontiers of Time: Retrocausation – Experiment and Theory. AIP Conference Proceedings, 863, 27-44, (2006)
12. Subtle differences in structural transitions between poly-L- and poly-D-amino acids of equal length in water, Physical Chemistry Chemical Physics, 8, 333-339 (“Hot Paper”), (2006)
13. The inexhaustible source of insights revealed by every photon, “The nature of light: What are photons?” SPIE International Symposium on Optics & Photonics, San Diego, 26-27 August 2007. Proceedings of SPIE, 6664, 36-46.
14. Entrapped energy in chiral solutions: Quantification and information capacity, Journal of Physical Chemistry B. 111, 11004-8, (2007)
15. Undoing quantum measurement: Novel twists to the physical account of time, Electronic Journal of Theoretical Physics, 4, 61-76 (Special issue, published as Physics of Emergence and Organization [I. Licata & A. J. Sakaji, Eds.]. London: World Scientific, (2007)
16. Can special relativity be derived from Galilean mechanics alone? O. Sela, B. Tamir, S. Dolev, A. C. Elitzur , Foundations of Physics, 39, 499-509, (2009)
17. Aharonov-Bohm effects under causality restrictions, the international workshop “50 Years of the Aharonov-Bohm Effect: Concepts and Applications.” Tel-Aviv, Israel, October 11-14, (2009).
Y. Scolnik
1. Is water chiralic:(Experimental evidence of chiral preference of water)
Y. Scolnik IIAR chapter of book: Aqua Ingocnita- WHY ICE FLOATS ON WATER?
(2014)
2. Intermolecular Chiral Assemblies in R and S 2-Butanol Detected by Microcalometry Measurements, U. Cogan, A. Shpigelman, I. Portnaya, A. rutenberg, Y. Scolnik, M. Shinitzky,
Chirality 24(7), (2012), 500-505
3. The principle of measurement and the basis of Big Bang Cosmology,
Y. Scolnik, Physical Essays 8, (2008), 203
4. Subtle differences in structural transitions between poly L- and poly D- amino acids of equal length in water, Y. Scolnik, I. Portnaya, U. Cogan, S. Tal, R. Haimovitz M. Fridkin, A. C. Elitzur, D. W. Deamer, M. Shinitzky Physical Chemistry Chemical Physics 8, (2006), 333-339 (published as “hot paper”)
5. Scanning Force Microscopy in the Applied Biological Sciences, Z. Reich, R. Kapon, R. Nevo,
Y. Pilpel,S. Zmora ,Y. Scolnik, Biotechnology Advances 19, (2001), 451-485
N. Wagner
1. How Symmetry and Order Affect Logic Operations and Computation in Catalytic Chemical Networks, N. Wagner, S. Alesebi and G. Ashkenasy; Journal of Computational and Theoretical Nanoscience 8 (in press, 2011).
2. Building Logic into Peptide Networks: Bottom-Up and Top-Down, G. Ashkenasy, Z. Dadon, S. Alesebi, N. Wagner and N. Ashkenasy; Israel Journal of Chemistry 50 (in press, 2011).
3. The Nature of Stability in Replicating Systems, N. Wagner and A. Pross; Entropy (in press, 2011).
4. Non-linear Product Formation in Replication Networks under Partial Thermodynamic Control, Z. Dadon, M. Samiappan, H. Kaikov, N. Wagner and G. Ashkenasy; submitted (2010).
5. Second Order Catalytic Quasispecies Yields Discontinuous Mean Fitness at Error Threshold, N. Wagner, E. Tannenbaum and G. Ashkenasy; Physical Review Letters 104, 188101 (2010).
6. Selection Advantage of Metabolic over Non-metabolic Replicators: A Kinetic Analysis, N. Wagner, A. Pross and E. Tannenbaum; BioSystems 99, 126 (2010).
7. Self-Replicating Amphiphilic Beta-Sheet Peptides, B. Rubinov, N. Wagner, H. Rapaport and G. Ashkenasy; Angewandte Chemie Int. Ed. 48, 6683 (2009).
8. Symmetry and Order in Systems Chemistry, N. Wagner and G. Ashkenasy; J. of Chem. Physics 130, 164907 (2009).
9. Systems Chemistry, Logic Gates, Arithmetic Units and Network Motifs in Small Networks, N. Wagner and G. Ashkenasy; Chemistry Eur. J. 15, 1765 (2009).
10. The Road to Non-enzymatic Molecular Networks, Z. Dadon, N. Wagner and G. Ashkenasy; Angewandte Chemie Int. Ed. 47, 6128 (2008).
11. Monte-Carlo Results for Continuum Percolation in Low and High Dimensions, N. Wagner, I. Balberg and D. Klein; Physical Review E 74, 011127 (2006).
12. AMOS2 Satellite Angular Velocity Estimation from a Single Sun Vector, N. Wagner; Proceedings of the 46th Israel Annual Conference on Aerospace Sciences (2006).
B. Tamir
1. Grover's quantum search algorithm and Diophantine approximation, Shahar Dolev, Itamar pitowsky and Boaz Tamir, Physical Review A 73 1, (2006)
2. Communication complexity protocols for qutrits, by B. Tamir, Physical Review A 75 1, (2007)
3. Quantum query complexity for qutrits, B. Tamir, Physical Review A, 77, 1, (2008)
4. A Quantum secret ballot, Shahar Dolev, Itamar Pitowsky and B. Tamir, quant-ph/0602087, (2006)
5. On Meaning, consciousness and quantum physics, Y.Neumann, B.Tamir, Journal of Cosmology, Vol 3, pages 540-547, (2009)
6. A Quantum differentiation of k-SAT instances, B.Tamir and G.Ortiz, New Journal of Physics 12, (2010).
7. Weak measurement and weak information, B.Tamir and S.Masis, Foundation of Physics, vol. 42, (4), (2012)
8. Introduction to weak measurements and weak values, B.Tamir and E,Cohen, Quanta Vol 2, (2013)
9. Can special relativity be derived from Galilean mechanics alone? O.Sela, B.Tamir, S.Dolev, A.Elitzur, Foundations of Physics 39, (2009)
10. Reversibility and efficiency in coding protein information, B. Tamir, A. Priel, J. of Theoretical Biology, 267, (2010)
11. Channel capacity and rate distortion in amino acid networks, B. Tamir, A. Priel, To appear in: Bio-Communication [in preparation]. Ed.: J. Seckbach & R. Gordon. Chicago, University of Chicago Press, (2014) O. Maimon, A. Kandel and M. Last, “”, Fuzzy Sets and Systems, Vol. 117, No.2, pp.183-194, (2001)